

Voltage Transducer LV 25-P/SP5

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic isolation between the primary circuit and the secondary

Electrical data

I _{PN}	Primary nominal current	rms	10		mΑ
I _{PM}	Primary current, measuring range		0 ±	14	mΑ
R _M	Measuring resistance		$\mathbf{R}_{_{ ext{M min}}}$	$\mathbf{R}_{ ext{M max}}$	
	with ± 15 V	@ \pm 10 mA $_{max}$	100	340	Ω
		@ ± 14 mA _{max}	100	180	Ω
I _{SN}	Secondary nominal curre		25		mΑ
K _N	Conversion ratio		2500	1000	
V _C	Supply voltage (± 5 %)		± 15		V
I _c	Current consumption		10 + I ,	8	mA

Accuracy - Dynamic performance data

$\mathbf{X}_{\scriptscriptstyle{\mathrm{G}}}$	Overall accuracy @ I _{PN} , T _A = 25°C	;	± 0.8		%
$\varepsilon_{\scriptscriptstyle L}$	Linearity error		< 0.2		%
_			Тур	Max	
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.15	mΑ
I _{OT}	Temperature variation of I _o	- 25°C + 85°C	± 0.25	± 0.50	mΑ
		- 40°C + 85°C	± 0.30	± 0.80	mΑ
t,	Response time $^{1)}$ to 90 % of \mathbf{V}_{PN} s	tep	25		μs

General data

T_{A}	Ambient operating temperature	- 40 + 85	°C	
T_s	Ambient storage temperature	- 50 + 90	°C	
$\mathbf{R}_{\scriptscriptstyle \mathrm{p}}^{\scriptscriptstyle \mathrm{c}}$	Primary coil resistance @ T _A = 85°C	300	Ω	
$\mathbf{R}_{\mathrm{s}}^{'}$	Secondary coil resistance @ T _A = 85°C	117	Ω	
m	Mass	22	g	
	Standard	EN 50155: 1995	EN 50155: 1995	

Note: 1) \mathbf{R}_1 = 25 k Ω (L/R constant, produced by the resistance and inductance of of the primary circuit).

10 mA 10 .. 1500 V

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- · Isolated plastic case recognized according to UL 94-V0.

Special features

- T_A = -40°C .. + 85°C
 V_d = 4.2 kV (4 kV DC / 5 mn).

Principle of use

 For voltage measurements, a current proportional to the measured voltage must be passed through an external resistor R, which is selected by the user and installed in series with the primary circuit of the transducer.

Advantages

- · Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized response time
- · Wide frequency bandwidth
- High immunity to external interference.

Applications

- · Single or three phase inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application Domain

Traction.

Voltage Transducer LV 25-P/SP5

Isolation characteristic				
V _d	Rms voltage for AC insulation test, 50 Hz, 1 min	4.2	kV	
$\mathbf{\hat{V}}_{d}$	Impulse withstand voltage 1.2/50 µs	16	kV	
		Min		
dCp	Creepage distance	19.5	mm	
dCI	Clearance	19.5	mm	
CTI	Comparative Tracking Index (group IIIa)	175		

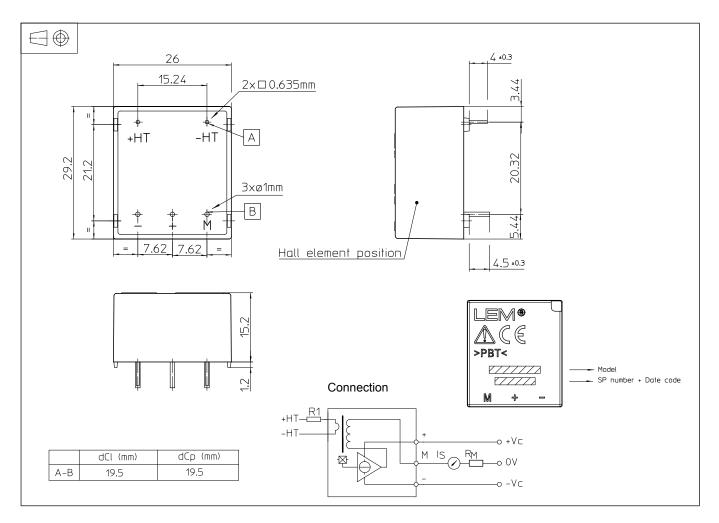
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LV 25-P/SP5 (in mm)

Mechanical characteristics

General tolerance ± 0.2 mm

Fastening & connection of primary 2 pins

 $0.635 \times 0.635 \; \text{mm} \\ \bullet \; \; \text{Fastening \& connection of secondary} \; \; 3 \; \text{pins } \varnothing \; 1 \; \text{mm}$

Recommended PCB hole Ø 1.2 mm

Remark

• I_s is positive when V_p is applied on terminal + HT.

Instructions for use of the voltage transducer model LV 25-P/SP5

Primary resistor \mathbf{R}_1 : the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, \mathbf{R}_1 should be calculated so that the nominal voltage to be measured corresponds to a primary current of 10 mA.

Example: Voltage to be measured \mathbf{V}_{PN} = 250 V a) \mathbf{R}_1 = 25 k Ω / 2.5 W, \mathbf{I}_P = 10 mA Accuracy = ± 0.8 % of \mathbf{V}_{PN} (@ \mathbf{T}_A = + 25°C) b) \mathbf{R}_1 = 50 k Ω / 1.25 W, \mathbf{I}_P = 5 mA Accuracy = ± 1.6 % of \mathbf{V}_{PN} (@ \mathbf{T}_A = + 25°C)

Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to \mathbf{R}_1 , in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages from 10 to 1500 V.